Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Adv Sci (Weinh) ; 9(11): e2103940, 2022 04.
Article En | MEDLINE | ID: mdl-35076181

Deregulated store-operated calcium entry (SOCE) mediated by aberrant STIM1-ORAI1 signaling is closely implicated in cancer initiation and progression. Here the authors report the identification of an alternatively spliced variant of STIM1, designated STIM1ß, that harbors an extra exon to encode 31 additional amino acids in the cytoplasmic domain. STIM1ß, highly conserved in mammals, is aberrantly upregulated in glioma tissues to perturb Ca2+ signaling. At the molecular level, the 31-residue insertion destabilizes STIM1ß by perturbing its cytosolic inhibitory domain and accelerating its activation kinetics to efficiently engage and gate ORAI calcium channels. Functionally, STIM1ß depletion affects SOCE in glioblastoma cells, suppresses tumor cell proliferation and growth both in vitro and in vivo. Collectively, their study establishes a splicing variant-specific tumor-promoting role of STIM1ß that can be potentially targeted for glioblastoma intervention.


Glioblastoma , Animals , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Glioblastoma/genetics , Mammals/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
2.
Neurobiol Learn Mem ; 183: 107468, 2021 09.
Article En | MEDLINE | ID: mdl-34058346

Accurate and precise timing is crucial for complex and purposeful behaviors, such as foraging for food or playing a musical instrument. The brain is capable of processing temporal information in a coordinated manner, as if it contains an 'internal clock'. Similar to the need for the brain to orient itself in space in order to understand its surroundings, temporal orientation and tracking is an essential component of cognition as well. While there have been multiple models explaining the neural correlates of timing, independent lines of research appear to converge on the conclusion that populations of neurons in the dorsal striatum encode information relating to where a subject is in time relative to an anticipated goal. Similar to other learning processes, acquisition and maintenance of this temporal information is dependent on synaptic plasticity. Microtubules are cytoskeletal proteins that have been implicated in synaptic plasticity mechanisms and therefore are considered key elements in learning and memory. In this study, we investigated the role of microtubule dynamics in temporal learning by local infusions of microtubule stabilizing and destabilizing agents into the dorsolateral striatum. Our results suggested a bidirectional role for microtubules in timing, such that microtubule stabilization improves the maintenance of learned target durations, but impairs the acquisition of a novel duration. On the other hand, microtubule destabilization enhances the acquisition of novel target durations, while compromising the maintenance of previously learned durations. These findings suggest that microtubule dynamics plays an important role in synaptic plasticity mechanisms in the dorsolateral striatum, which in turn modulates temporal learning and time perception.


Learning/drug effects , Microtubules/drug effects , Neostriatum/drug effects , Neuronal Plasticity/drug effects , Time Perception/drug effects , Tubulin Modulators/pharmacology , Animals , Corpus Striatum/drug effects , Corpus Striatum/physiology , Learning/physiology , Microtubule Proteins/drug effects , Microtubule Proteins/physiology , Microtubules/physiology , Neostriatum/physiology , Nocodazole/pharmacology , Paclitaxel/pharmacology , Rats
3.
Compr Physiol ; 8(3): 981-1002, 2018 06 18.
Article En | MEDLINE | ID: mdl-29978901

The calcium release-activated calcium (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), represents a prototypical example of store-operated calcium entry in mammals. The ORAI-STIM signaling occurs at membrane contact sites formed by close appositions between the endoplasmic reticulum (ER) and the plasma membrane. ORAI1 is a four-pass transmembrane protein that forms a highly calcium-selective ion channel in the plasma membrane. STIM1 is an ER-resident, a single-pass transmembrane protein that serves as a calcium sensor within the ER lumen and a potent activator of ORAI1 calcium channels. The intricate interplay between ORAI and STIM controls calcium entry into cells to regulate a myriad of physiological processes. We highlight herein the current knowledge on the structure-function relationship of CRAC channel, with a focus on key structural elements that mediate STIM1 conformational switch and the dynamic coupling between STIM1 and ORAI1. Furthermore, we discuss the physiological roles of STIM-ORAI signaling in various tissues and organs, as well as major pathological conditions arising from loss- or gain-of-function mutations in human ORAI1 and STIM1. © 2017 American Physiological Society. Compr Physiol 8:981-1002, 2018.


Calcium Channels/physiology , Calcium Signaling/physiology , Calcium/metabolism , Stromal Interaction Molecules/physiology , Animals , Humans
4.
Adv Exp Med Biol ; 993: 117-138, 2017.
Article En | MEDLINE | ID: mdl-28900912

Ca2+ signals regulate a plethora of cellular functions that include muscle contraction, heart beating, hormone secretion, lymphocyte activation, gene expression, and metabolism. To study the impact of Ca2+ signals on biological processes, pharmacological tools and caged compounds have been commonly applied to induce fluctuations of intracellular Ca2+ concentrations. These conventional approaches, nonetheless, lack rapid reversibility and high spatiotemporal resolution. To overcome these disadvantages, we and others have devised a series of photoactivatable genetically encoded Ca2+ actuators (GECAs) by installing light sensitivities into a bona fide highly selective Ca2+ channel, the Ca2+ release-activated Ca2+ (CRAC) channel. Store-operated CRAC channel serves as a major route for Ca2+ entry in many cell types. These GECAs enable remote and precise manipulation of Ca2+ signaling in both excitable and non-excitable cells. When combined with nanotechnology, it becomes feasible to wirelessly photo-modulate Ca2+-dependent activities in vivo. In this chapter, we briefly review most recent advances in engineering CRAC channels to achieve optical control over Ca2+ signaling, outline their design principles and kinetic features, and present exemplary applications of GECAs engineered from CRAC channels.


Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Stromal Interaction Molecules/metabolism , Animals , Humans , Light
5.
Cell Calcium ; 64: 36-46, 2017 06.
Article En | MEDLINE | ID: mdl-28104276

Calcium acts as a second messenger to regulate a myriad of cell functions, ranging from short-term muscle contraction and cell motility to long-term changes in gene expression and metabolism. To study the impact of Ca2+-modulated 'ON' and 'OFF' reactions in mammalian cells, pharmacological tools and 'caged' compounds are commonly used under various experimental conditions. The use of these reagents for precise control of Ca2+ signals, nonetheless, is impeded by lack of reversibility and specificity. The recently developed optogenetic tools, particularly those built upon engineered Ca2+ release-activated Ca2+ (CRAC) channels, provide exciting opportunities to remotely and non-invasively modulate Ca2+ signaling due to their superior spatiotemporal resolution and rapid reversibility. In this review, we briefly summarize the latest advances in the development of optogenetic tools (collectively termed as 'genetically encoded Ca2+ actuators', or GECAs) that are tailored for the interrogation of Ca2+ signaling, as well as their applications in remote neuromodulation and optogenetic immunomodulation. Our goal is to provide a general guide to choosing appropriate GECAs for optical control of Ca2+ signaling in cellulo, and in parallel, to stimulate further thoughts on evolving non-opsin-based optogenetics into a fully fledged technology for the study of Ca2+-dependent activities in vivo.


Calcium Signaling , Optogenetics/methods , Animals , Calcium/metabolism , Genetic Engineering , Humans , Stromal Interaction Molecule 1/metabolism , Type C Phospholipases/metabolism
...